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a b s t r a c t 

In this paper 1 , we investigate cross-scene video foreground segmentation via supervised and unsuper- 

vised model communication. Traditional unsupervised background subtraction methods often face the 

challenging problem of updating the statistical background model online. In contrast, supervised fore- 

ground segmentation methods, such as those that are based on deep learning, rely on large amounts of 

training data, thereby limiting their cross-scene performance. Our method leverages segmented masks 

from a cross-scene trained deep model (spatio-temporal attention model (STAM), pyramid scene pars- 

ing network (PSPNet), or DeepLabV3+) to seed online updates for the statistical background model (CPB), 

thereby refining the foreground segmentation. More flexible than methods that require scene-specific 

training and more data-efficient than unsupervised models, our method outperforms state-of-the-art 

approaches on CDNet2014, WallFlower, and LIMU according to our experimental results. The proposed 

framework can be integrated into a video surveillance system in a plug-and-play form to realize cross- 

scene foreground segmentation. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Video foreground segmentation plays a fundamental role in 

any vision systems [1] . For example, surveillance systems usu- 

lly record video around the clock and generate massive amounts 

f data. However, keyframes that contain moving objects such as 

edestrians and vehicles often occur very infrequently and are 

pread over time. Foreground segmentation can eliminate such re- 

undancies and preserve keyframes for further analyses. However, 

oreground segmentation is challenging for nonstationary/dynamic 

cenes (e.g., scenes with outdoor illumination changes, indoor light 

urning on/off, swaying tree branches, water fountains, or any com- 

ination of these factors). Thus, simplistic background subtraction 

ethods are ill-suited for foreground segmentation in dynamic 

cenes. Early studies focused on the use of statistical distributions 

o build unsupervised background modeling algorithms with back- 

round updating schemes to adapt to dynamic backgrounds. 

There are two main strategies for updating a background model 

nline to handle dynamic scenes [2] : (1) selective updating, in 
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hich a new sample is added to the model only if it is classified 

s a background sample, and (2) blind updating, in which every 

ew sample is added to the model. Using selective updating, one 

ust decide whether each pixel value belongs to the background 

r not. The simplest way to do this is to use the segmentation re- 

ult as an updating decision. The problem is that any incorrect seg- 

entation decision will result in persistent incorrect segmentation 

fterward. Blind updating does not suffer from this deadlock sce- 

ario since it does not involve any updating decisions; it allows 

ntensity values that do not belong to the background to be added 

o the model. This leads to more false negatives as those fore- 

round pixels erroneously become part of the model. Trade-offs 

ust be made with the update rate, which regulates the spread 

t which the background model is updated. A high update rate 

eads to noisy segmentation due to sensitivity to small or tempo- 

ary changes, whereas a low update rate, yields an outdated back- 

round model and results in false segmentation. 

Modern deep learning-based foreground segmentation ap- 

roaches can provide pixel-level annotation for each frame with- 

ut any model updates. The main obstacle in introducing a su- 

ervised learning technique is that foreground segmentation is 

 scene-dependent task. Supervised models that are trained on 

https://doi.org/10.1016/j.patcog.2021.107995
http://www.ScienceDirect.com
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Fig. 1. Proposed method. 

Fig. 2. Selection of the supporting blocks and model updates. 
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Fig. 3. A target pixel (the red point) that has different supporting blocks (the green 

boxes) at different times. When a boat passes by, the model always selects the 

supporting blocks in the background area. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this arti- 

cle.) 
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cene-specific data do not generalize well in real-world scenarios, 

nd cross-scene models do not perform well on individual scenes. 

Essentially, video foreground segmentation is an empirical seg- 

entation problem that is closely related to the scene’s appear- 

nce, motion, and semantics. In this paper, we propose a new fore- 

round segmentation framework via supervised and unsupervised 

odel communication: Using a deep model as seeds, our method 

an facilitate the accurate online update of the unsupervised sta- 

istical background model and realize refined foreground segmen- 

ation. We use the cooccurrence pixel-block model (CPB) [3,4] as 

he unsupervised background model and we use the spatiotem- 

oral attention model (STAM) [5] , pyramid scene parsing network 

PSPNet) [6] and DeepLabV3+ [7] as the supervised segmentation 

uidance models. The CPB model compares each observed pixel 

ith its supporting blocks to determine whether the pixel belongs 

o the foreground. The supporting blocks are selected via spatial 

orrelation [8,9] . This method’s training process relies on the cal- 
2 
ulation of the linear correlation between pixels, for which on- 

ine update is too expensive. Therefore, the segmentation perfor- 

ance of this method will gradually decrease over time. STAM is 

 cross-scene foreground segmentation deep model. PSPNet and 

eepLabV3+ are state-of-the-art semantic segmentation models. 

he proposed framework is illustrated in Fig. 1 . To bridge the gap 

etween unsupervised and supervised guidance models for fore- 

round detection, the guidance model is used to obtain coarse seg- 

entation results. Then, through three stages, namely, (1) selection 

f the supporting blocks, (2) replacement of the supporting blocks, 

nd (3) calculation of the foreground similarity, CPB realizes model 

pdates and completes fine-grained segmentation. 

The contributions of this study include the following: 

(1) Coarse-to-fine segmentation. The proposed interaction of 

upervised and unsupervised models can realize fine-grained fore- 

round segmentation. 

(2) Unsupervised background model updates. The unsupervised 

tatistical background model can update and avoid deadlock by us- 

ng segmented masks as external selective-updating cues. 

(3) This method is more flexible than deep learning-based 

ethods that depend on scene-specific training. Compared with 
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Fig. 4. Replacement of supporting blocks when classifications differ. 
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nsupervised models, it reduces the number of training samples 

nd utilizes training datasets with no human intervention. 

The remainder of this paper is organized as follows. In 

ection 2 , we discuss related work. Section 3 describes the pro- 

osed method in detail. The experimental results are presented 

nd discussed in Section 4 , and the final conclusions of this study 

re presented in Section 5 . 

. Related studies 

.1. Unsupervised background subtraction 

.1.1. Background model 

Since observations of the background in image sequences 

an be considered stochastic events, many statistical approaches 

10,11] have been employed to model the background. Background 

odels can be classified into two categories: Independent pixel- 

ise models employ the statistical processing of time-domain ob- 

ervations for each pixel. Most earlier background modeling ap- 

roaches fall into this category, which include the well-known sin- 

le Gaussian [12] model, Gaussian mixture model (GMM) [13] , ker- 

el density estimation model (KDE) [2] , and hidden Markov models 

HMMs) [14] . 

The methods of the second category exploits the spatial de- 

endencies of pixels in the background. Oliver [15] employed an 

igenspace decomposition approach in which the background was 

odeled by the eigenvectors that corresponded to the largest 

igenvalues. Sheikh [16] used the joint representation of image 

ixels in a local spatial distribution and color information to com- 

etitively build both background and foreground KDE models in 

 decision framework. Heikkilä and Pietikäinen [17] used a local 
3 
inary pattern (LBP) to subtract the background and detect mov- 

ng objects in real-time. Reference [18] learned a tensor subspace 

epresentation by adaptively updating the sample mean and an 

igenbasis for each unfolding matrix. Cooccurrence pixel-pair back- 

round model [8,9] employs an alignment of supporting pixels for 

he target pixel, which maintains a stable intensity difference in 

raining frames without any restriction of locations. The intensity 

ifference of the pixel pairs enables the background model to tol- 

rate noise and be illumination-invariant. Methods that have been 

roposed in recent years include [19,20] . 

.1.2. Advanced background updating strategies 

In addition to selective and blind updating, several advanced 

trategies are available for updating the background model online. 

he updating strategy of Vibe [21] incorporates three important 

omponents: memoryless updates to ensure a smoothly decaying 

ifespan for the samples that are stored in the background pixel 

odels; random time subsampling to extend the time windows 

hat are covered by the background pixel models; and spatial prop- 

gation of background pixel samples to ensure spatial consistency 

nd to enable the adaptation of the background pixel models that 

re masked by the foreground. SuBSENSE [22] updates pixel mod- 

ls using a conservative, stochastic, two-step approach: Samples 

re replaced randomly instead of according to their last modifica- 

ion to ensure that a solid history of long and short-term back- 

round representations can be retained in the pixel models. Since 

ew samples can only be inserted when a local pixel is recognized 

s background, this approach prevents static foreground objects 

rom being assimilated too fast, which often occurs for methods 

hat use blind updating. The second step is spatial diffusion, which 

nables homogeneous regions with the background to be absorbed 
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Fig. 5. Comparison of various methods on WallFlower. 
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uch faster. This step increases the background model’s spatial co- 

erency to the extent that it can tolerate limited camera motion. 

MOG [23] , which is based on a mixture of Gaussians, explores a 

lassification mechanism and combines color space discrimination 

apabilities with hysteresis and a dynamic update rate for back- 

round model updating. The update rate is set to a fixed minimum 

alue when a pixel is transferred from background to foreground. 

.2. Methods that are based on convolutional neural networks 

.2.1. Foreground segmentation 

Background subtraction based on a convolutional neural net- 

ork is first proposed in [24] . DeepBS [25] utilizes a convolutional 

eural network and a spatial-median filter in cross scenes. As the 

oreground is detected based on independent frames, the neighbor- 

ng frames’ temporal relevance is ignored. Cascade CNN [26] is a 

emiautomatic method that reduces the required amount of train- 

ng data. CNN branches for processing images of various sizes are 

ascaded together to help detect a multiscale foreground. SGSM- 

S [27] , which is an improved version of the RPCA method, uses 

he entropy rate superpixel segmentation model (ERS) and the 

tructured Gaussian scale mixture model (SGSM) to simulate a 

roup of pixels that belong to a moving object. DPDL [28] (deep 

ixel distribution learning) uses pixel-based features via RPoTP 

random permutation of temporal pixels). It deliberately blurs the 

emporal correlation of the previous observation results of a sin- 
4 
le pixel. Reference [29] uses a convLSTM-based network to cap- 

ure spatial and temporal features. The encoder features are im- 

orted into a spatiotemporal information propagation (STIT) mod- 

le, which can better capture the spatiotemporal relationship be- 

ween consecutive frames. FgSegNet [30,31] encodes the features 

f three scales of the same input image with three sets of CNN 

ncoders. 

All the approaches that are discussed above are supervised 

odels, for which training sample annotation is time-consuming 

nd laborious. They also tend to generalize poorly to scenes 

hat are absent from the training data. Although various meth- 

ds [5,25] that are trained on large-scale multi-scene datasets 

an segment various scenes, they typically perform even worse 

han unsupervised background subtraction methods on untrained 

cenes. 

.2.2. Semantic segmentation 

Semantic segmentation methods have made remarkable 

rogress due to the development of convolutional neural net- 

orks. BFP [32] learns the boundary as an additional semantic 

lass to help the network become aware of the boundary layout. 

 boundary aware feature propagation (BFP) module is introduced 

or sharing local features within their regions. CCL [33] , uses a 

ontext-contrast local convolutional network to generate multilevel 

nd multiscale context-aware local features, and an aggregation 

cheme, namely, gated sum, is proposed for selecting features 
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Fig. 6. Comparison on LIMU. False positives are marked in orange, and false negatives are marked in green. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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f various scales and segmenting objects at multiple scales. It is 

mproved in [34] via the introduction of a boundary delineation 

efinement (BDR) model with a small computational cost. A 

hape-variant context (SCVNet) [35] is proposed for customizing 

he shape/scale of the context for each pixel instead of using 

imple smooth context information. This study also uses a labeling 

enoising model for helping reduce errors that are caused by noisy 

ow-level features. Although semantic segmentation approaches 

an provide high-level annotation for each pixel, they ignore the 

emporal relevance and motion cues, which are crucial for video 

oreground segmentation. 

. Proposed approach 

.1. Supervised model as segmentation guide 

In this subsection, we introduce the three supervised models 

hat are used in the proposed method as segmentation guides. 

.1.1. STAM 

The spatiotemporal attention model (STAM) [5] is an attention- 

uided weight-able connection encoder-decoder that maintains the 

seful connections of the symmetric layer and suppresses the in- 

alid connections. It aggregates features from both the decoder and 

ncoder by introducing an attention module in the decoding stage. 

he high-level features provide global information to guide the 
5 
ttention module to select suitable low-level features. The static 

rame and its optical flow (motion cue) feed two encoders, and the 

ttention modules reorganize them to reconstruct the foreground 

t the pixel level. In contrast to the model without motion cues 

nd the attention module, this model jointly learns appearance and 

emporal information to optimize the efficiency of feature aggrega- 

ion. We train STAM using 5% random training data with its ground 

ruth on the CDNet2014 dataset [36] . 

.1.2. PSPNet 

The pyramid scene parsing network (PSPNet) [6] uses a pre- 

rained ResNet model with atrous convolution to extract feature 

aps. The main role of atrous convolution is to enlarge the recep- 

ive field. A pyramid pooling module with a depth of 4 is used 

o obtain context information. Features of various depths are ob- 

ained through pooling operations of different scales based on in- 

ut features. These pyramid features are directly up-sampled to 

he same size as the input features and connected with the in- 

ut features. The process of feature merging fuses the detailed fea- 

ures and global features of the target. PSPNet provides sufficient 

lobal context information for pixel-level scene analysis. The pyra- 

id pooling module collects and integrates context information on 

arious scales, which is more representative than global pooling. 
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Fig. 7. Comparison of training sets of various sizes. 
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.1.3. Deeplabv3+ 

The spatial pyramid pooling module can encode multiscale con- 

extual information by probing the incoming features with fil- 

ers or pooling operations at multiple rates and multiple effec- 

ive fields-of-view, while the encode-decoder can capture sharper 

bject boundaries by gradually recovering the spatial information. 

eepLabV3+ [7] combines the advantages of both methods. It ex- 

ends DeepLabv3 by adding a simple yet effective decoder module 

o refine the segmentation results especially along object bound- 

ries. It further explores the Xception model and applies depthwise 

eparable convolution to both the atrous spatial pyramid pooling 
6 
nd decoder modules, thereby resulting in a faster and stronger 

ncoder-decoder network. 

For both of these semantic segmentation methods, the 

DE20K [37] training dataset is used to obtain the trained mod- 

ls. 

.2. Co-occurrence pixel-Block model 

The CPB [3,4] model compares the target pixel p with its sup- 

orting block Q 

B to determine whether p belongs to the fore- 

round. 

The co-occurrence supporting blocks of target pixel p are de- 

ned as { Q 

B 
m 

} m =1 , 2 , ... ,M 

. Those supporting blocks are selected by us- 

ng the Pearson product-moment correlation coefficient 

 Q 

B 
m 

} m =1 , 2 , ... ,M 

= { Q 

B | M largest γ (p, Q 

B ) } , (1)

(p, Q 

B 
m 

) = 

C 
p, Q 

B 

m 

σp · σ
Q 

B 

m 

. (2) 

here C 
p, Q 

B 
m 

is the intensity covariance of the target pixel p and its 

upporting blocks Q 

B 
m 

. σp and σ
Q 

B 
m 

are the standard deviations of 

he intensity values of p and Q 

B 
m 

, respectively. Each target pixel p 

orresponds to several supporting blocks Q 

B . They maintain a sta- 

le relationship over time, namely, the difference in intensity fol- 

ows a single Gaussian distribution: 

I p − I Q B m 
) ∼ N(b m 

, σ 2 
m 

) . (3) 

 p is the intensity value of target pixel p and I 
Q B m 

is the average 

ntensity value of supporting block Q 

B 
m 

. 

After training, the CPB model obtains all the supporting blocks 

 Q 

B 
m 

} m =1 , 2 , ... ,M 

of each target pixel p . The state of each pixel-block

air (p, Q 

B 
m 

) is defined as follows: 

 m 

= 

{
1 if | I p − I Q B m 

| ≤ η · σm 

0 otherwise 
(4) 

here η is a threshold of the Gaussian model. Considering the dif- 

erence in correlation between each target pixel and its supporting 

locks, their correlation coefficients γm 

are introduced as weights. 

PB will classify a target pixel p as a foreground pixel when the 

ollowing conditions are satisfied: 

M ∑ 

 =1 

γm 

· ω m 

> λ ·
M ∑ 

m =1 

γm 

(5) 

here λ is the relevance decision threshold. 

The CPB model relies on the correlation coefficient between tar- 

et pixel p and its supporting blocks { Q 

B 
m 

} m =1 , 2 , ... M 

, which is dif- 

cult to update after training initialization. The lack of updates 

auses the model’s performance to degrade over time and limits 

he online applicability. 

.3. Model communication 

.3.1. Stage 1: Selection of the supporting blocks 

When a foreground object covers the supporting block, it will 

estroy the Gaussian relationship between the supporting block 

nd its target pixel. The state of the pixel-block pair, which is de- 

ned by Eq. 4 is temporarily invalid, thereby resulting in segmen- 

ation errors. Moreover, the segmentation result that is provided by 

he guidance model has a high probability of belonging to the fore- 

round. The CPB model’s performance can be improved by avoid- 

ng the selection of supporting blocks in the foreground area. As 

hown in Fig. 2 , only the supporting blocks in the background area 

re used, while the blocks in the foreground, which are shaded 
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N

ray, are temporarily discarded. The candidate supporting blocks, 

hich are shaded light yellow, are obtained during the training 

rocess. Fig. 3 illustrates the selection process of supporting blocks 

hen a boat passes by. 

.3.2. Stage 2: Replacement of supporting blocks when classifications 

iffer. 

The process of Stage 1 avoids the selection of the supporting 

locks that are in the foreground area. However, supporting blocks 

an still be in the foreground area due to potential differences be- 

ween the guidance model’s result and the ground truth. Moreover, 

he pixel-block model that is obtained during the training process 

ay degrade over time because the background is not static, e.g., 

ue to cloud drift in the sky or entry/exit of vehicles in a parking 

ot. As a result, foreground or background “noise” might arise in 

he segmentation process. 

Pixels for which the CPB and guidance model classifications dif- 

er are represented by green and orange areas in Fig. 4 . They are

ivided into two cases: Case 1, in which CPB regards the pixel as 

oreground while the guidance model classifies it as background, 

nd Case 2, in which CPB regards the pixel as background while 

he guidance model classifies it as foreground. When the result 

rom the CPB model differs from that of the guidance model, the 

upporting blocks that correspond to high correlation coefficient 

alues must be responsible for potential errors, which may already 

e in the state of structural failure. The strategy is as follows: 

 = 

M ∑ 

m =1 

ω m 

(6) 

= 

{
1 
K 

∑ M 

m =1 γm 

· ω m 

Case 1 

1 
M−K 

∑ M 

m =1 γm 

· (1 − ω m 

) Case 2 

(7) 

f the correlation coefficient between the supporting block Q 

B 
m 

and 

arget pixel p satisfies: 

m 

≥ γ (8) 

hen Q 

B 
m 

must be replaced. 

As illustrated in Fig. 4 , when considering target pixels that dif- 

er in terms of classification, their supporting blocks, which are 

elected via Eq. 8 will be temporarily discarded, and the candi- 

ate supporting blocks (represented by yellow squares) will re- 

lace them as the new supporting blocks of the target pixels. 

.3.3. Stage 3: Calculation of the foreground similarity 

The pixel-block model’s construction is based on the correla- 

ion of their long-term eigenvalue sequences. The supporting block 

ith a high correlation coefficient should be in an area that is ho- 

ogeneous with its target pixel. When pixel p is in the foreground 

nd CPB misclassifies it as a background pixel (Case 2, as described 

n Section 3.3.2 ), we calculate the similarity of the Euclidean dis- 

ance in the feature space between the pixel and the surrounding 

oreground pixels r F and calculate the average similarity between 

he pixel and all its supporting blocks r B . If it satisfies the following

quation, p will be classified as foreground: 

 F > ε · r B (9) 

here ε is the similarity decision threshold. 

.4. Discussion on the quantity and quality of the training samples 

In this section, we discuss the impacts of the size and quality of 

he training dataset on the performance of the proposed method. 
7 
.4.1. Quantity of training samples 

Various methods such as KDE and CPB require a large amount 

f training data because they need precise statistical histograms 

r correlation coefficients to build a background model. The pro- 

osed method focuses more on selecting and updating the sup- 

orting block Q 

B 
m 

during the segmentation stage. The coarse seg- 

entation that is produced by the supervised guidance models and 

he updated supporting blocks provide performance compensation 

or the CPB model. Therefore, our method is less susceptible to in- 

ufficient background model training due to the training data size, 

hereby enabling it to maintain stable performance under training 

ets of various sizes. 

.4.2. Quality of the training samples 

Most traditional unsupervised background modeling methods, 

ncluding the CPB model, tend to perform well with training sets 

hat contain as few foreground objects as possible. In a scenario 

n which almost all the samples in the training set contain fore- 

round objects such as pedestrians or vehicles, the target pixel p

nd its supporting block Q 

B 
m 

would maintain a stable relationship 

ver time. Moreover, the history of a specified target pixel p can 

e categorized into background and foreground stages. Its support- 

ng blocks can also be divided into two classes: those that main- 

ain a stable relationship with p when they are in the background 

nd those that maintain a stable relationship with p when they are 

n the foreground. This will cause CPB to consider both the back- 

round and the moving objects as background and lead to many 

alse negatives. When the proposed method faces this scenario, the 

locks that maintain a stable relationship with p but contain the 

oreground will be replaced according to the guidance model. As a 

esult, the proposed method is more tolerant and flexible in train- 

ng set selection. Relevant experimental verification will be con- 

ucted in the next section. 

. Experiments 

.1. Experimental settings and implementation details 

For foreground segmentation model STAM [5] , we use the train- 

ng protocol that is recommended in DeepBS [25] , which randomly 

elects 5% of the samples with the corresponding ground truths of 

ach subset from CDNet2014 [36] . All the other deep supervised 

oreground segmentation models, which include DeepBS [25] , Cas- 

ade CNN [26] , and FgSegNet [30] , are also trained on the same 

raining set as STAM. 

For semantic segmentation models, since there is no se- 

antic annotation in the foreground segmentation dataset, 

eepLabV3+ [7] and PSPNet [6] are trained on ADE20K [37] . We 

efine various classes as foreground according to the protocol that 

s recommended in [38] , which include person, car, cushion, box, 

ook, boat, bus, truck, bottle, van, bag, and bicycle. 

For the CPB model and five other unsupervised background 

ubtraction models, namely, SuBSENSE [22] , KDE [2] , GMM [13] , 

MOG [23] and PBAS [39] , we use the following training strat- 

gy: On the CDNet2014 and LIMU datasets, we choose the first 400 

rames for training. On the WallFlower dataset, we adopt the strat- 

gy that is recommended by the dataset itself, namely, we use the 

rovided 200 frames as the training set. The experimental param- 

ter settings for CPB are presented in Table 1 . The segmented fore- 

rounds are obtained without any postprocessing. 

.2. Results and evaluation 

.2.1. Cross-scene testing on CDNet2014 

Experiments are conducted on a total of 11 subsets in CD- 

et2014, bad weather (BDW), baseline (BSL), camera jitter (CJT), 



D. Liang, B. Kang, X. Liu et al. Pattern Recognition 117 (2021) 107995 

Table 1 

Parameter settings. 

Parameter Value 

number of supporting blocks K 20 

number of candidate supporting blocks 10 

Gaussian model threshold η 2.5 

Relevance decision threshold λ 0.5 

Similarity decision threshold ε 0.8 

d

f

(

w

w

C

w

t

g

a

i

o

D

C

t

n

P

m

s

m

t

c

a

e

C

f

4

W

a

a

T  

t  

h

I

D

m

d

a

t

s

c

c

M

t

t

a

t

a

D

g

4

L

d

p  

i

b

D

i

0

o

1

m

g

m

p

m

b

a

fl

p

b

4

t

a

a

f

c

a

a

t

S

i

n

d

b

o

C

f

i

t

t

d

t

C

s

r

c

I

i

t

i

a

t

g

ynamic background (DBG), intermittent object motion (IOM), low 

rame rate (LFR), night videos (NVD), shadow (SHD), thermal 

THM) and turbulence (TBL). Since STAM is trained on CDNet2014 

ith 5% random samples with the ground truths for each subset, 

e do not use it as a guidance model for fairness. DeepBS, Cascade 

NN, and FgSegNet are also removed for the same reason. Instead, 

e use semantic segmentation models – DeepLabV3+ and PSPNet, 

rained on ADE20K as guidance models. Five unsupervised back- 

round subtraction models, namely, SuBSENSE, KDE, GMM, BMOG, 

nd PBAS, are used for comparison. 

The testing results are presented in Table 2 , and CPB that 

s guided by PSPNet ranks first among all unsupervised meth- 

ds in terms of overall F-measure, while CPB that is guided by 

eepLabV3+ ranks second. considering the 11 individual subsets, 

PB that is guided by DeepLabV3+ ranks at the top for 3, and CPB 

hat is guided by PSPNet ranks at the top for 6. For two subsets, 

amely, baseline (BSL) and thermal (THM), CPB that is guided by 

SPNet and CPB that is guided by DeepLabV3+ show low perfor- 

ance for the following reasons: (1) The unsupervised background 

ubtraction model can handle simple scenes well. However, the se- 

antic segmentation model is not guaranteed to distinguish be- 

ween real foregrounds such as a moving and a parked car. (2) The 

overage of the ADE20K dataset is insufficient. For thermal (THM), 

ll the videos are captured by an infrared camera and are not cov- 

red by ADE20K. Finally, we observe that both types of guided 

PB models outperform their original CPB model, and their per- 

ormances are relatively stable. 

.2.2. Cross-scene testing on WallFlower 

Next, we perform cross-scene experiments on WallFlower [40] . 

allFlower has strict regulations on the training set. This dataset 

lso contains many huge objects, and each scene has only one im- 

ge in the test set. 

The experimental results on WallFlower are presented in 

able 3 , Table 4 and Fig. 5 . Using the F-measure as the evalua-

ion metric in Table 3 , CPB that is guided by STAM realizes the

ighest score on LightSwitch and outperforms CPB in all scenes. 

n other scenes, the best performances are realized by PSPNet and 

eepLabV3+. 

From the visualized results in Fig. 5 , we observe that the perfor- 

ances of CPB models that are guided by PSPNet and DeepLabV3+ 

egrade mainly due to the poor performance of the original CPB 

nd the presence of large foreground objects. When an object is 

oo large (or the false-positive area is too large), there may not be 

ufficiently many qualified candidate supporting blocks for CPB to 

omplete the model updating stages, thereby resulting in an in- 

omplete foreground or more false positives. 

There is no foreground object in the ground truth of subset 

ovedObject. Therefore, specificity = TN / (TN + FP) is selected as 

he evaluation metric instead of the F-measure. From Table 4 and 

he fifth row of Fig. 5 which corresponds to MovedObject, PSPNet 

nd DeepLabV3+ obtain perfect results, but this is by accident since 

he foreground class that we defined does not include the class 

rmchair. 
8 
Although the proposed method does not outperform PSPNet or 

eepLabV3+ on WallFlower, it outperforms CPB and other back- 

round subtraction models. 

.2.3. Cross-scene testing on LIMU 

LIMU [41] , with subsets CameraParameter, Intersection, and 

ightSwitch, is a standard video surveillance dataset for both in- 

oor and outdoor scenes. Experimental results on this dataset are 

resented in Table 5 and Fig. 6 . In terms of the F-measure, CPB that

s guided by STAM ranks first on LightSwitch. CPB that is guided 

y PSPNet ranks first on CameraParameter. CPB that is guided by 

eepLabv3+ ranks first on Intersection and overall. Correspond- 

ngly, the overall F-measure is 0.3154 higher than that of STAM, 

.2563 higher than that of PSPNet, and 0.2883 higher than that 

f DeepLabV3+. All three methods outperform CPB by more than 

0% in terms of the overall F-measure. From Fig. 6 , the proposed 

ethod suppresses false positives well (marked in orange). 

In subset LightSwitch, when the lights are turned off, all the 

uidance models perform poorly due to low illumination. CPB has 

any false negatives in the inferred foreground and scattered false 

ositives in the inferred background. The results for the guidance 

odels are the opposite: their foregrounds are complete, and their 

ackground parts have no scattered points. Nevertheless, the guid- 

nce models could have false-positive results that are caused by 

uctuations in light or other factors. In these three scenarios, the 

roposed model can learn different but useful information from 

oth and significantly outperform each of the two modules alone. 

.3. Discussion of the results on wallflower and LIMU 

In most of the sequences of WallFlower, the results that are ob- 

ained by the proposed method are similar to those of the guid- 

nce models (STAM, PSPNet, and DeepLabV3+) alone. In contrast, in 

ll LIMU sequences, the results are significantly better than those 

rom each of the two modules (CPB and guidance models) alone. It 

an be explained by the algorithm and dataset characteristics. 

In WallFlower, most of the foreground objects occupy a large 

rea in the image, and these scenes are not difficult for the guid- 

nce models; thus, the guidance models could segment most of 

he foreground area. Due to the proposed algorithm principle in 

tage 1 (described in Section 3.3.1 ), most of the original support- 

ng blocks with a large linear correlation coefficient γm 

were elimi- 

ated due to the large foreground area. After Stage 1, γm 

of the up- 

ated supporting blocks was small because most of the supporting 

locks with large γm 

were eliminated. Therefore, from the left part 

f Eq. 5 , 
∑ M 

m =1 γm 

, had a relatively small value, and, as a result, 

PB was not sensitive to foreground segmentation. The dominant 

actor for foreground detection was Eq. 9 in Stage 3 (described 

n Section 3.3.3 ), which led to the foreground mainly following 

he guidance model’s segmentation results. However, according to 

he results on WallFlower, the final segmentation showed a slight 

egradation when the guidance model had nearly perfect segmen- 

ation while the foreground was large due to the involvement of 

PB. 

In LIMU, where most of the foreground objects are of regular 

izes compared with the whole scene, the proposed method could 

econcile the results from both CPB and the guidance model ac- 

ording to Stage 2 (described in Section 3.3.2 ) without any bias. 

n constrast, when the guidance model is unreliable (for example, 

n LIMU-LightSwitch, STAM is not sensitive to the foreground when 

he illumination is very low), CPB could follow its original support- 

ng blocks and be free from the interference of the guidance model 

ccording to Stage 2 (described in Section 3.3.2 ). 

In summary, the proposed framework is robust even when 

here is severe performance deterioration in either the CPB or 

uidance models, even in an extreme case. 
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Table 2 

F-measure values of various methods on CDNet2014. Since STAM, DeepBS, Cascade CNN and FgSegNet are trained in CDNet2014, in this experiment 

we do not use STAM as a guidance model and do not use DeepBS, Cascade CNN or FgSegNet for comparison. 

Methods in Scenes BDW BSL CJT DBG IOM SHD THM TBL LFR NVD PTZ Overall 

CPB [4] 0.860 0.814 0.790 0.771 0.601 0.813 0.760 0.729 0.615 0.520 0.504 0.633 

CPB guided by PSPNet 0.865 0.850 0.861 0.850 0.761 0.886 0.544 0.852 0.889 0.604 0.521 0.772 

PSPNet [6] 0.503 0.759 0.586 0.654 0.435 0.276 0.180 0.460 0.869 0.357 0.118 0.605 

CPB guided by DeepLabV3 + 0.860 0.848 0.840 0.815 0.768 0.895 0.797 0.835 0.727 0.549 0.545 0.753 

DeepLabV3 + [7] 0.648 0.541 0.484 0.569 0.588 0.823 0.579 0.363 0.507 0.220 0.476 0.676 

SuBSENSE [22] 0.862 0.950 0.815 0.818 0.657 0.865 0.817 0.779 0.645 0.560 0.348 0.741 

KDE [2] 0.757 0.909 0.572 0.596 0.409 0.803 0.742 0.448 0.548 0.437 0.037 0.595 

GMM [13] 0.738 0.825 0.597 0.633 0.521 0.732 0.662 0.466 0.537 0.410 0.152 0.571 

BMOG [23] 0.784 0.830 0.749 0.793 0.529 0.840 0.635 0.693 0.610 0.498 0.235 0.725 

PBAS [39] 0.698 0.802 0.646 0.601 0.471 0.702 0.465 0.665 0.536 0.512 0.478 0.576 

Table 3 

F-measure values of various methods on WallFlower. 

Methods Bootstrap Camouflage ForegroundAperture LightSwitch TimeOfDay WavingTrees Overall 

CPB [4] 0.6518 0.6112 0.5900 0.7157 0.7564 0.7033 0.6714 

CPB guided by STAM 0.7560 0.6884 0.9402 0.9097 0.7949 0.6665 0.7929 

STAM [5] 0.7414 0.7369 0.8292 0.9090 0.3429 0.5325 0.6820 

CPB guided by PSPNet 0.5341 0.9849 0.9204 0.7048 0.8147 0.8696 0.7132 

PSPNet [6] 0.7203 0.9876 0.9887 0.7710 0.8195 0.9891 0.9731 

CPB guided by DeepLabV3 + 0.5927 0.9867 0.9237 0.6886 0.2604 0.8682 0.7122 

DeepLabV3 + [7] 0.8327 0.9941 0.9884 0.7375 0.1909 0.9850 0.7881 

SuBSENSE [22] 0.4192 0.9535 0.6635 0.3201 0.7107 0.9597 0.6711 

KDE [2] 0.5887 0.8498 0.5726 0.2879 0.7425 0.9854 0.6832 

GMM [13] 0.5306 0.8307 0.5778 0.2296 0.7203 0.9767 0.6443 

BMOG [23] 0.5484 0.8310 0.5785 0.3546 0.7295 0.9840 0.6535 

PBAS [39] 0.2857 0.8922 0.6459 0.2212 0.4875 0.8421 0.5624 

DeepBS [25] 0.7479 0.9857 0.6583 0.6114 0.5494 0.9546 0.7512 

Cascade CNN [26] 0.5238 0.6778 0.7935 0.5883 0.3771 0.2874 0.5413 

FgSegNet [30] 0.3587 0.1210 0.4119 0.6815 0.4222 0.3456 0.3902 

Table 4 

Specificity on WallFlower - Moved Object. 

Guided by Guided by Guided by STAM [5] PSPNet [6] DeepLabV3 + [7] Cascade FgSegNet [30] CPB [4] 

STAM PSPNet DeepLabV3 + CNN [26] 

0.9977 0.9836 0.9838 0.9949 1.0 1.0 0.7763 0.8470 0.8922 

Table 5 

F-measure values of various methods on LIMU. 

Methods CameraParameter Intersection LightSwitch Overall 

CPB [4] 0.6545 0.6778 0.6633 0.6652 

CPB guided by STAM 0.7484 0.7672 0.8211 0.7789 

STAM [5] 0.6742 0.6237 0.0953 0.4644 

CPB guided by PSPNet 0.8631 0.7443 0.7527 0.7868 

PSPNet [6] 0.8408 0.1317 0.6190 0.5305 

CPB guided by DeepLabV3 + 0.8419 0.7707 0.7688 0.7931 

DeepLabV3 + [7] 0.6965 0.5624 0.2555 0.5048 

SuBSENSE [22] 0.6744 0.6530 0.6934 0.6753 

KDE [2] 0.6456 0.6483 0.6754 0.6561 

GMM [13] 0.6372 0.6423 0.6743 0.6519 

BMOG [23] 0.6584 0.6830 0.6749 0.6793 

PBAS [39] 0.6582 0.6412 0.4591 0.5862 

DeepBS [25] 0.6705 0.5545 0.6332 0.6073 

Cascade CNN [26] 0.1025 0.0453 0.0277 0.0585 

FgSegNet [30] 0.2668 0.1428 0.0414 0.1503 

4

s

s  

m

b

a

E

4

t  

b

p

s

p

t

.4. Ablation studies 

In this subsection, we examine the importance of the three 

tages in the proposed method when it is applied to LIMU. As pre- 

ented in Table 6 , in Stages 1 - 3, our proposed method’s perfor-

ance gradually improves. In Stage 1, the performance is improved 

y avoiding the selection of supporting blocks in the foreground 

rea. In Stage 2, the candidate supporting blocks are updated via 

qs. 7 and 8, thereby resulting in a significant improvement. 
t

9 
.5. Comparison on various numbers of training samples 

The performance of the proposed method is compared with 

hat of CPB under various training data sizes in Fig. 7 . As the num-

er of frames in the training set increases, the original CPB model’s 

erformance rapidly improves. Although the proposed method 

hows a more stable trend, it substantially outperforms CPB, es- 

ecially under a low training sample volume. This suggests that 

he proposed framework can save training time by requiring fewer 

raining samples in real-world applications. In subset LightSwitch, 
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Fig. 8. False negatives with various training set qulities. 

Table 6 

Ablation studies on LIMU. 

Methods Stage 1 Stage 2 Stage 3 F-measure 

CPB [4] 0.6652 

CPB � 0.6831 

guided by � � 0.7519 

STAM � � � 0.7789 

CPB � 0.6950 

guided by � � 0.7703 

PSPNet � � � 0.7868 

CPB � 0.6991 

guided by � � 0.7838 

DeepLabV3 + � � � 0.7931 
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Fig. 9. Training set quality comparision. The F-measure difference between the seg- 

mentation results after training on A and B. 
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hen turning off lights, none of the guidance models performed 

ell due to low illumination; hence the results depend more on 

he number of training samples for CPB to cover low-light condi- 

ions. 

.6. Comparison on training samples that vary in terms of quality 

We examine the effect of training set quality on the segmenta- 

ion results. We use CPB and the proposed method with guidence 

y STAM to conduct experiments on LIMU. The experiment setup 

s as follows: For each subdataset, we choose 150 frames with a 

elatively high percentage of foreground objects as training set A 

nd 150 frames with almost no foreground objects as training set 

. Then, we perform segmentation on the same test set. 

The visualization results for subdataset CameraParameter are 

resented in Fig. 8 . The second and third columns are the segmen- 

ation results that were obtained after training the CPB model on A 

nd B, respectively. The fourth and fifth columns are the segmenta- 

ion results of the proposed method after training on A and B, re- 

pectively. Compared to CPB, which generated many false-negative 
10 
lassifications (marked green in Fig. 8 ) under training set A, the 

roposed method performs more stably. 

In Fig. 9 , we plot the change in the F-measure between the seg- 

entation results after training on A and B. The difference in the 

-measure of the proposed method is much smaller than that of 

PB. The proposed method is less sensitive to the training sample 

uality and more flexible in selecting training frames. 

. Conclusions 

In this paper, we investigate foreground segmentation in dy- 

amic scenes via supervised and unsupervised model communi- 

ation. Based on the CPB model, three supervised segmentation 

ethods are introduced for completing a coarse-to-fine foreground 

egmentation and updating the background model. The experimen- 

al results demonstrate that the proposed method outperforms CPB 
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n all the experimental datasets. On the CDnet2014 dataset, the 

roposed method ranks in the top two among all the considered 

ethods. On the WallFlower dataset, the proposed method out- 

erforms all the background subtraction methods. On the LIMU 

ataset, the proposed method ranks in the top three. 

In summary, based on the overall performance, the proposed 

ethod significantly outperforms its component methods (three 

upervised segmentation methods and CPB) in cross-scene tests. 

he proposed method is more flexible than CPB in terms of the 

raining set size and quality. 

The main limitation of the proposed method is its inability to 

dentify qualified spatial supporting blocks when the foreground 

ccupies a large proportion of the frame, which leads to degraded 

nal segmentation results compared to the guidance models. 

We plan to evaluate additional guidance models and explore a 

etter selection of guidance models for specified scenarios in the 

uture. 
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